Using operational matrix for numerical solution of fractional differential equations
Authors
Abstract:
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the proposed method is provided under several mild conditions. Three numerical examples are given to show the efficiency and accuracy of the method. Illustrative examples are included to demonstrate the validity, efficiency, and applicability of the method.
similar resources
Numerical Solution of Fredholm Integro-differential Equations By Using Hybrid Function Operational Matrix of Differentiation
In this paper, first, a numerical method is presented for solving a class of linear Fredholm integro-differential equation. The operational matrix of derivative is obtained by introducing hybrid third kind Chebyshev polynomials and Block-pulse functions. The application of the proposed operational matrix with tau method is then utilized to transform the integro-differential equations to...
full textA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
full textNUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION
In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...
full texta meshless method for numerical solution of fractional differential equations
in this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. we approximate the exact solution by use of radial basis function(rbf) collocation method. this techniqueplays an important role to reduce a fractional dierential equation to a system of equations. the numerical results demonstrate the accuracy and ability of this me...
full textNumerical Solution of Nonlinear Multi-order Fractional Differential Equations by Implementation of the Operational Matrix of Fractional Derivative
The main aim of this article is to generalize the Legendre operational matrix to the fractional derivatives and implemented it to solve the nonlinear multi-order fractional differential equations. In this approach, a truncated Legendre series together with the Legendre operational matrix of fractional derivatives are used. The main characteristic behind the approach using this technique is that...
full textNumerical Solution of Fractional Order Differential-algebraic Equations Using Generalized Triangular Function Operational Matrices
This article introduces a new application of piecewise linear orthogonal triangular functions to solve fractional order differential-algebraic equations. The generalized triangular function operational matrices for approximating Riemann-Liouville fractional order integral in the triangular function (TF) domain are derived. Error analysis is carried out to estimate the upper bound of absolute er...
full textMy Resources
Journal title
volume 2 issue 2
pages 65- 80
publication date 2017-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023